If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-5a-19=0
a = 1; b = -5; c = -19;
Δ = b2-4ac
Δ = -52-4·1·(-19)
Δ = 101
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{101}}{2*1}=\frac{5-\sqrt{101}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{101}}{2*1}=\frac{5+\sqrt{101}}{2} $
| 7.9x-3.5=20.2 | | 3b+10=5b+4 | | 3y2+7y+2=0 | | -3=x/6-2 | | 3.2=x.20 | | -1/2x+3=10 | | 2x+4=28-4x | | 6-x-3=-8 | | 18x-3x=0 | | 14+x+19÷3=17 | | 12m=7+205 | | x=1+5/x | | 4/3w—12=2/3w | | (11x+6)+(12x-1)=180 | | 2x3-6x2+8x=0 | | 6(2k+1)=42 | | 3b+39=(-5b)2 | | 3(14+19)+x=17 | | 9=2+x/5 | | 18+3x−x2=0 | | 6x+2(2x-4)=22 | | y=3.75/4 | | 4/7(x)=16 | | 6x-4=-34-5 | | 2a-10=3a+15 | | 4y-16-+8y=-4 | | 7x+0.8=63.8 | | 2y^2+22y+50=0 | | x3+11x2+40x+48=0 | | y=5(1/4)+2 | | 39=7r-3 | | 12+6a=2a-4 |